

#### Factor endowment

#### Giovanni Marin

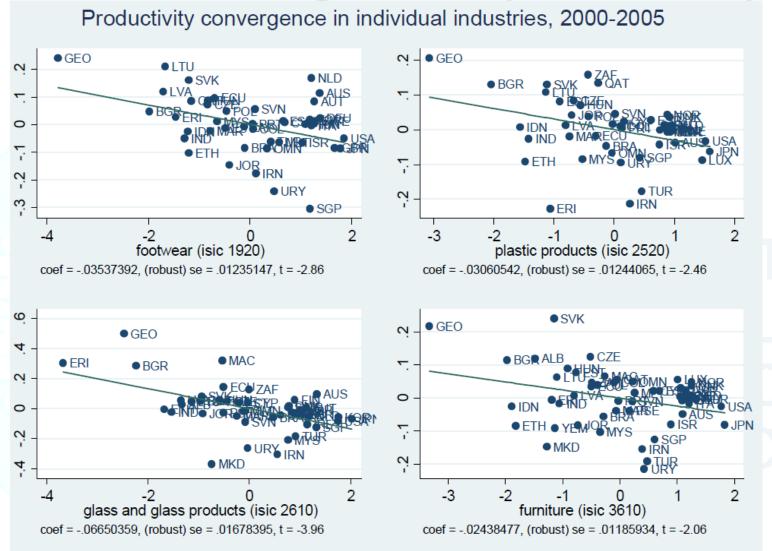
Department of Economics, Society, Politics Università degli Studi di Urbino 'Carlo Bo'

### References for this lecture

#### BBVG

- Paragraphs 3.4, 3.5, 3.6, 3.7, 3.8

- Further suggested readings:
  - World Trade Report 2010, Chapter C, paragraph 5
     (page 91): "The natural resource curse"
  - The Economist "What Dutch disease is, and why it's bad", Nov 5th 2014
  - The New Yorker "Venezuela's "Resource Curse" will outlive Hugo Chavez", Mar 6th 2013


### Discussion about Ricardo model

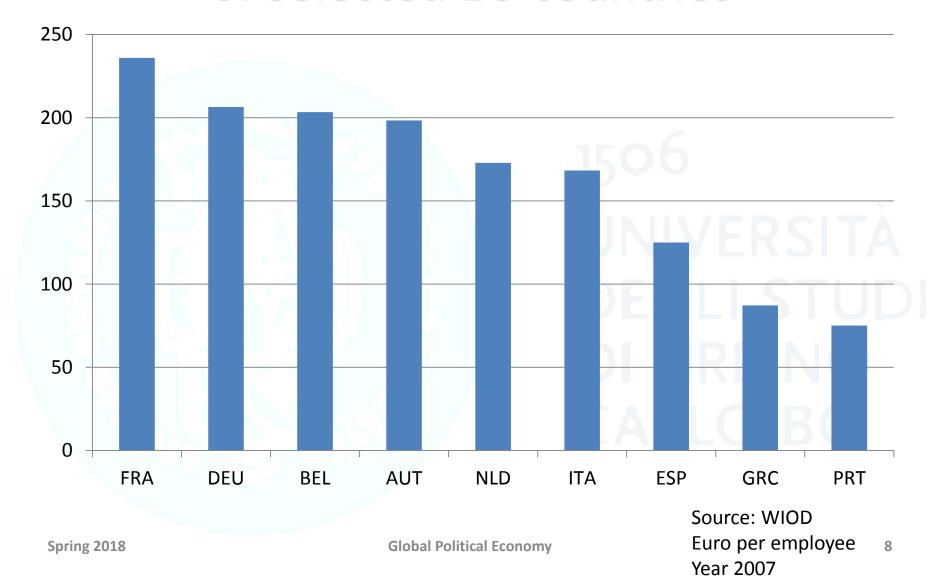
- Differences in productivity across countries were considered as exogenous
  - Why should EU productivity in cloth production differ from USA productivity for the same commodity?
- Critique of economists in the 1930s
  - Improved communication and tighter economic relationships (trade, FDI, travels) across countries have reduced barriers in accessing knowledge
  - Countries have access, potentially, to the same technologies
  - Maybe technology was not that different across countries...

# Diffusion of technologies across countries: knowledge spillovers

- Knowledge spillovers → (unintentional) diffusion of knowledge across countries
- New technologies are invented and developed in a country
- Other countries learn about these new technologies in many ways:
  - Scientific publications
  - Publication of patents → the patent 'protects' the technology but information on the technology itself is disclosed and made publicly available → imitation
  - Technologies embodied in FDI
  - Trade of commodities that embody new technologies facilitate imitation (e.g. reverse engineering)
  - Media, trade fairs, etc
  - Word of mouth

## Is there convergence in productivity?




# Knowledge spillovers and absorptive capacity

- Even though access to knowledge has improved substantially, technology does not diffuse immediatly across countries
  - R&D and patenting is very much concentrated in a few advanced countries
  - To adopt a new technologies, the recipient country should be able to incorporate these technologies in its economy
- Absorptive capacity → ability to adopt new technologies (e.g. through knowledge spillovers)
  - Doing R&D at home facilitates the adoption of technologies developed abroad
  - Human capital also trigger the absorption of foreign knowledge

### Heckscher-Ohlin-Samuelson model

- The Heckscher-Ohlin-Samuelson (HOS) model departs from the Ricardo model in two respects
  - Technology is now the same in all countries
  - Two inputs are needed for producing commodities
    - Labour
    - Capital
- Countries differ in the endowment of inputs
- Result → countries specialize in the production of the commodity that is intensive in the input that is relatively abundant in the country

## K/L ratio in the manufacturing sector of selected EU countries



- Two inputs of production
  - Labour
  - Capital
- Two homogenous commodities
  - Steel → capital intensive
  - Cloth → labour intensive
- Two countries
  - Country 1 is relatively well endowed with labour (wrt country 2)
  - Country 2 is relatively well endowed with capital (wrt country 1)

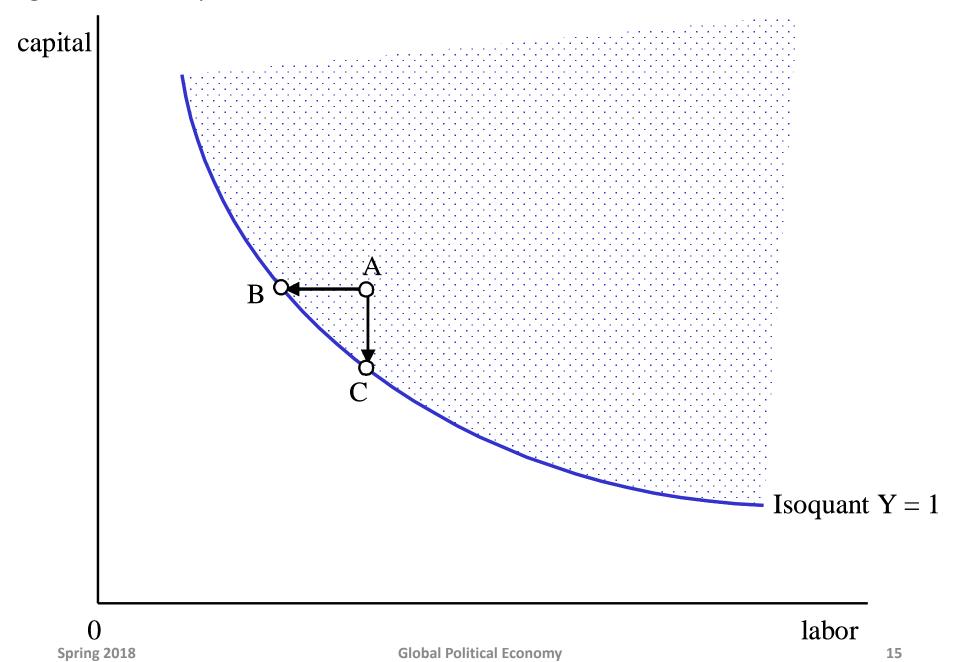
- Production functions for each commodity in the two countries are identical
  - Steel =  $f_1(K,L)=f_2(K,L)=f(K,L)$
  - Cloth =  $g_1(K,L)=g_2(K,L)=g(K,L)$
- Steel production is relatively more capital intensive than cloth production
  - For a given vector of input prices (wages [w] and rental price of capital [r]), the ratio of capital to labour is greater for steel than for cloth production
- Constant returns to scale in production

- The relative supply of capital and labour differs between the two countries
- Labour and capital are (as labour in Ricardo)
  - Perfectly mobile across sectors within country
  - Perfectly immobile between countries → strong assumption for capital!
- Consumers' preferences are identical in the two countries
  - For given relative prices of commodities (p<sub>Steel</sub>/p<sub>Cloth</sub>), the ratio of steel-to-cloth consumption is the same in the two countries → MRUS<sub>1</sub>(steel,cloth)=MRUS<sub>2</sub>(steel,cloth)

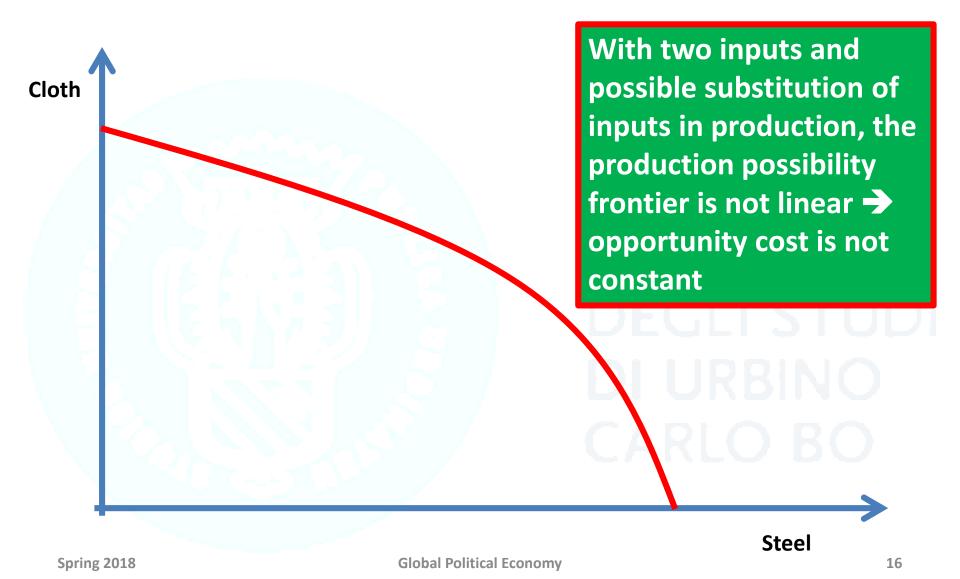
 There is no barrier to trade (as in the Ricardo model)

- Markets of commodities and inputs are perfectly competitive
  - Producers, workers, capital holders and consumers in all sectors and countries are price takers
  - Perfect competition implies that market prices equal production costs → zero profits

## **HOS** with closed economy


 Before allowing countries to trade, we evaluate what happens when each country is an autarchy (no import or export)

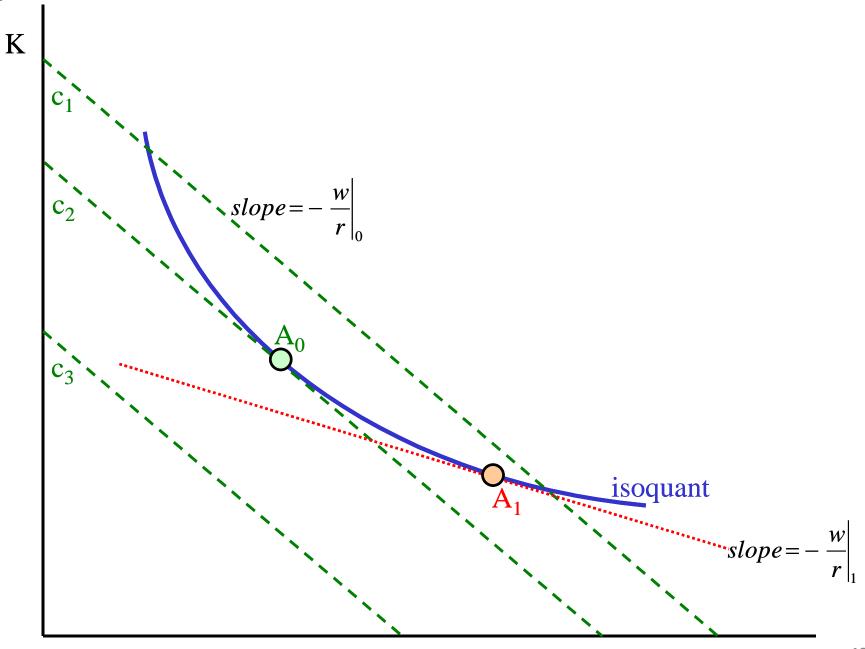
- All commodities produced at home are consumed at home (no export)
- All commodities consumed at home are produced at home (no import)


## Closed economy – production costs

- Production cost (for one unit of output) → C<sub>1</sub>=a<sub>L1</sub>w+a<sub>K1</sub>r
  - a<sub>L1</sub> is the use (not the requirement!) of labour to produce one unit of good 1 (inverse of labour productivity)
  - a<sub>K1</sub> is the use of capital to produce one unit of good 1 (inverse of capital productivity)
- Why 'use' and not 'requirement' → possible substitution
- Isocost  $\rightarrow$  K=C<sub>1</sub>/r L\*w/r
- Producers can substitute labour with capital (and viceversa) according to the production function → isoquant
- The opportunity cost of steel in terms of cloth is not constant!

Figure 3.4 An isoquant




## Production possibility frontier

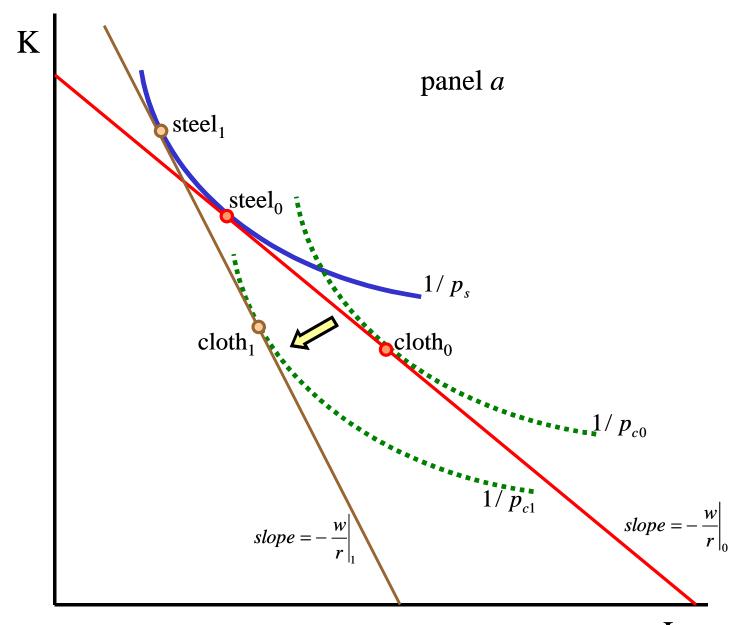


## Change in input relative prices

- Changes in relative input prices (w/r) determine a movement along the isoquant
  - If w/r increases (i.e. labour becomes relatively more expensive than capital), producers will substitute expensive labour with cheap capital
- Cross-country differences in w/r depend on the relative endowment of capital and labour
  - If labour is relatively (i.e. wrt the other country) more abundant than capital, labour will be relatively cheaper than capital

Figure 3.5 Cost minimization

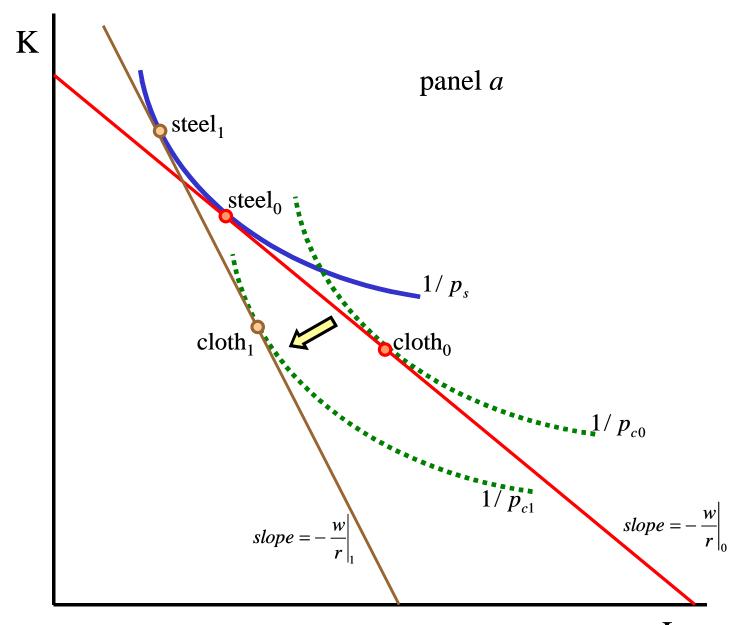



## Allocation of factors to producing commodities

 Input prices (rental price of capital and wage) are the same for both commodities

#### Unit value isoquants

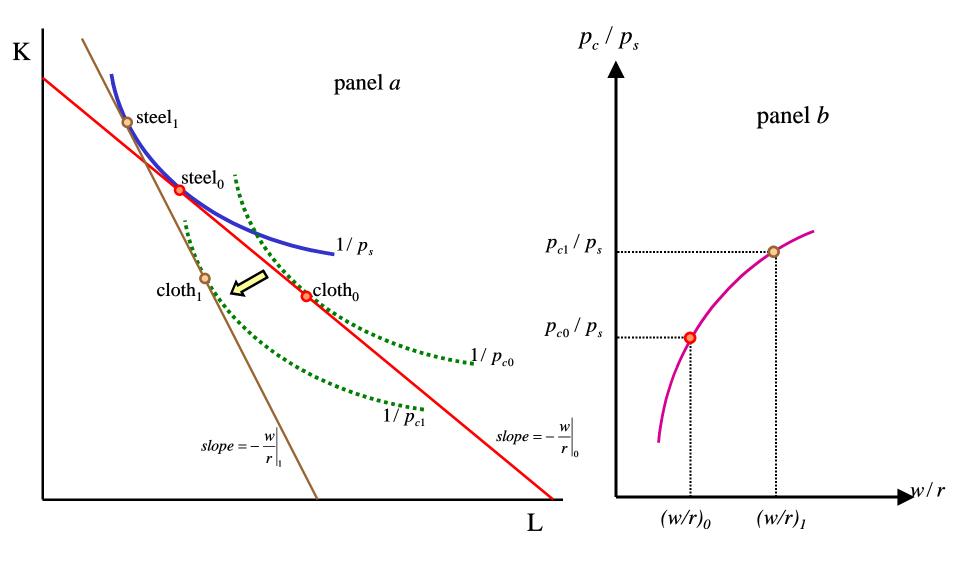
- They represent the production of each good that is worth one dollar of revenue when sold on the market ⇒ q=1/p
- The unit value isoquant is inversely related to the price of a commodity → the more expensive the good, the fewer units are needed to get 1 dollar's worth of revenue


Figure 3.6 Lerner diagram, a goods prices and b factor prices



## Equilibrium in closed economy

- If both goods are produced in the closed economy, unit value isoquants for the two products will be tangent to the unit isocost
  - Same input costs for both commodities → optimal production points must lie on the same unit isocost line (where the unit isocost line is an isocost with cost=1 → zero profits!)
- Relative factor intensity → in equilibrium, producing one dollar's worth of steel requires more capital than producing one dollar's worth of cloth


Figure 3.6 Lerner diagram, a goods prices and b factor prices



## Simulating a change in output prices

- Example: **price of cloth increases**
- We need fewer units of cloth to produce one dollar's worth of revenue 
   unit value isoquant of cloth shifts towards the origin
- Unit cost isocost must rotate clockwise to reach a new equilibrium in which the two unit value isoquants are tangent with the unit value isocost
- Wage rate has increased relative to the rental rate of capital
  - Cloth is labour intensive 
     higher price of cloth leads to an increased demand of labour and thus to higher wages (given that labour endowment is fixed)
  - Substitution effect → as labour is more expensive, cloth production (but also steel production) has become slightly more capital intensive
- Relationship between good prices and factor prices → Lerner diagram

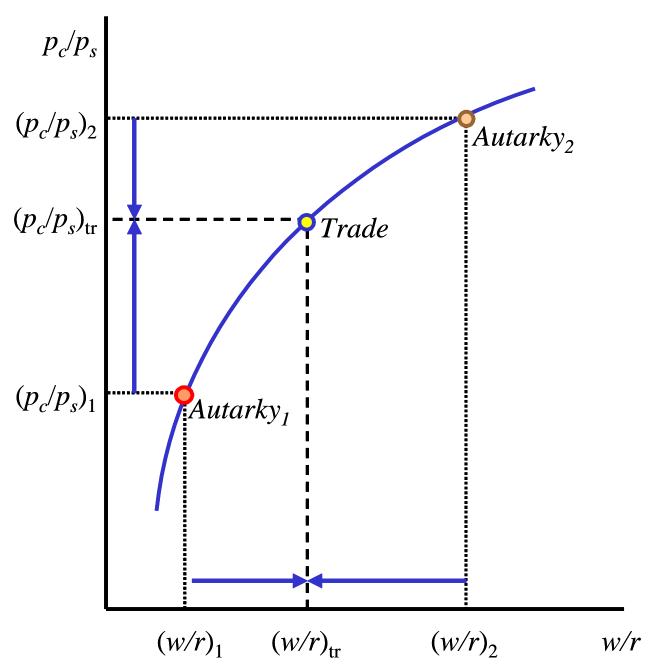
Figure 3.6 Lerner diagram, a goods prices and b factor prices



## Open economy in HOS

- Recall that:
  - Country 1 is relatively well endowed with labour (wrt country 2)
  - Country 2 is relatively well endowed with capital (wrt country 1)
  - Technology (i.e. the production function) is the same in the two countries
  - Production inputs cannot move across countries

## Open economy in HOS


- Same technology:
  - Same Lerner diagram in both countries
  - Equilibrium in autarchy for the two countries is located in different points of the (same) Lerner diagram
  - Different points reflect differences in factors' endowment

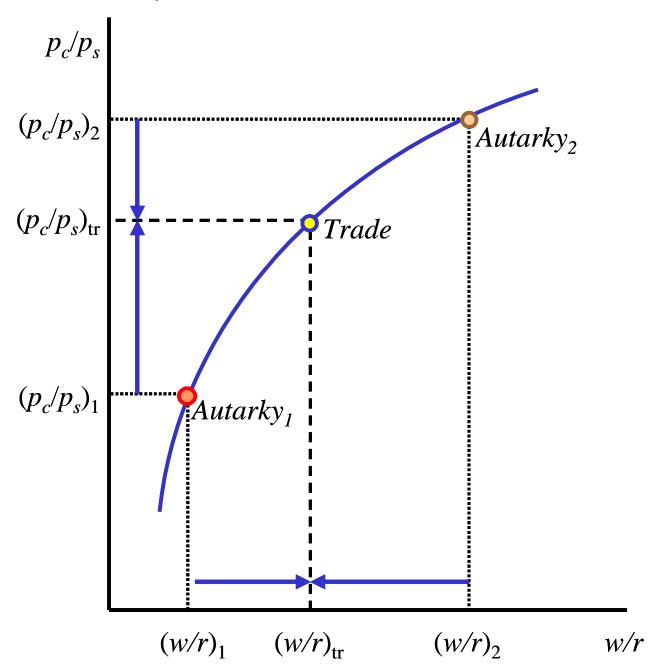
## Open economy in HOS

 Country 1 is relatively well endowed with labour while country 2 is relatively well endowed with capital

 In autarchy w/r will be lower in country 1 than in country 2

Figure 3.7 The impact of international trade




#### Trade in HOS

- Trade is costless
- The price of each commodity will be the same in both countries (as in Ricardo)
- This implies that  $p_c/p_s$  will be the same worldwide
- In equilibrium, also w/r is the same in both countries

#### Trade in HOS

- Moving from autarchy to trade
  - Consumers in country 1 (labour abundant) will import the capital-intensive good (steel) from country 2 (capital abundant) as it is cheaper than at home
  - Increased demand for steel in country 2 will increase the demand for capital and will thus increase its price
  - Higher cost of capital results in more costly steel in country 2
  - Consumers in country 2 (capital abundant) will import the labour-intensive good (cloth) from country 1 (labour abundant) as it is cheaper than at home
  - Increased demand for cloth in country 1 will increase the demand for labour and will thus increase its price
  - Higher cost of labour results in more costly cloth in country 1

Figure 3.7 The impact of international trade



#### Trade in HOS

- Consumers in country 1 (labour abundant) will consume less cloth than in autarchy (relative price of cloth has increased at home) but producers in country 1 produce more cloth than in autarchy
- In autarchy home consumption = home production
- In open economy → export of cloth from country 1 to country 2
- Consumers in country 2 (capital abundant) will consume less steel than in autarchy (relative price of steel has increased at home)
- Producers in country 2 produce more steel than in autarchy
- Export of steel from country 2 to country 1

#### Production in HOS

- As a **consequence** of **trade**:
  - Cloth production becomes more capital intensive in country 1 because the relative price of labour increases wrt autarchy
  - There is a shift of labour and capital from steel production to cloth production
  - Steel production becomes more labour intensive in country 2 because the relative price of capital increases wrt autarchy
  - There is a shift of labour and capital from cloth production to steel production

#### **HOS** theorem

A country will **export** the **good** that **intensively uses** its **relatively abundant factor** of production, and it will **import** the commodity that **intensively uses** its relatively **scarce factor** of production

## Specialization

Differently from the Ricardo model, the HOS model generally results in partial specialization

- A country will export only one commodity, but will produce at home both commodities
  - → still consistent with 'inter-industry trade'

## Factor price equalization

- As technology (productivity) and commodity prices are the same in both countries, also factor prices are equal in both countries in equilibrium
- This happens even though production factors are immobile (and thus cannot seek abroad a greater reward than at home)
- Gains from trade: compared to autarchy, with trade:
  - The reward of the relatively abundant factor increases
  - The reward of the relatively scarce factor decreases

## Trade of factors?

 Specialization according to factor endwoment can be seen as a trade in production factors

- The capital-abundant country exports the capital-intensive commodity that embodies a large amout of capital
- The importing country imports capital embodied in imports, partly compensating for the domestic scarcity of capital

## Summing up HOS

- Even in presence of identical technology and productivity in the production of commodities, the model predicts room for inter-industry trade
- Trade is driven by differences in the endowment of production factors
- Specialization (and export) in the commodity that is relatively intensive in the relative abuntant factor
- Worldwide equalization of commodity prices and factor prices

## **Empirical test of HOS**

- Need to estimate the amount of a factor of production incorporated in international trade flows
- Compare the relative importance of factors of production incorporated in export with the actual relative endowment of factors in the exporting country
- Relative abundance of labour → a country's labour endowment is higher than its GDP equivalent share of the world's endowment of labour
- ➤ Which is the **share** of '**correctly predicted**' **specialization** according to **factor abundance**?

Beugelsdijk, Brakman, Garretsen, and van Marrewijk International Economics and Business

© Cambridge University Press, 2013 Chapter 3 – Trade, comparative advantage, and competition

| Table 3.3 | Sign tests | of factor        | abundance |
|-----------|------------|------------------|-----------|
|           | ~          | 0.1 .1 000 0 0 . |           |

| Country       | Identical technology | Different technology |
|---------------|----------------------|----------------------|
| All countries | 0.50                 | 0.62                 |
| Bangladesh    | 0.33                 | 0.78                 |
| Indonesia     | 0.22                 | 0.67                 |
| Portugal      | 0.22                 | 0.78                 |
| Greece        | 0.11                 | 0.56                 |
| Ireland       | 0.67                 | 0.44                 |
| Spain         | 0.22                 | 0.78                 |
| Israel        | 0.67                 | 0.89                 |
| Hong Kong     | 0.67                 | 0.89                 |
| New Zealand   | 0.44                 | 0.22                 |
| Netherlands   | 0.44                 | 0.44                 |
| France        | 0.33                 | 0.33                 |
| West Germany  | 0.56                 | 0.67                 |
| UK            | 0.67                 | 0.78                 |
| USA           | 0.89                 | 0.56                 |

## **Empirical test of HOS**

Very poor 'prediction' of the pure HOS model

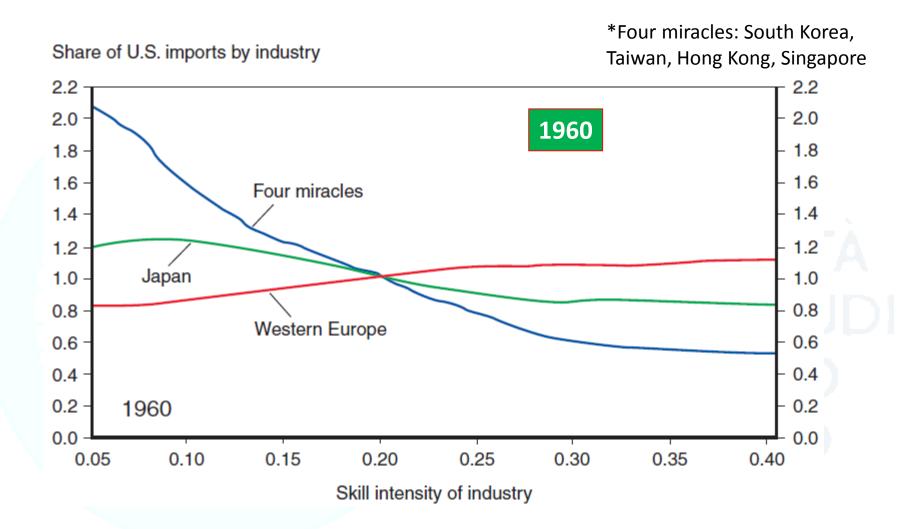
 Prediction improves when the assumption of 'indentical technology' is removed →
 comparative advantage! (Ricardo)

# Factor price equalization?

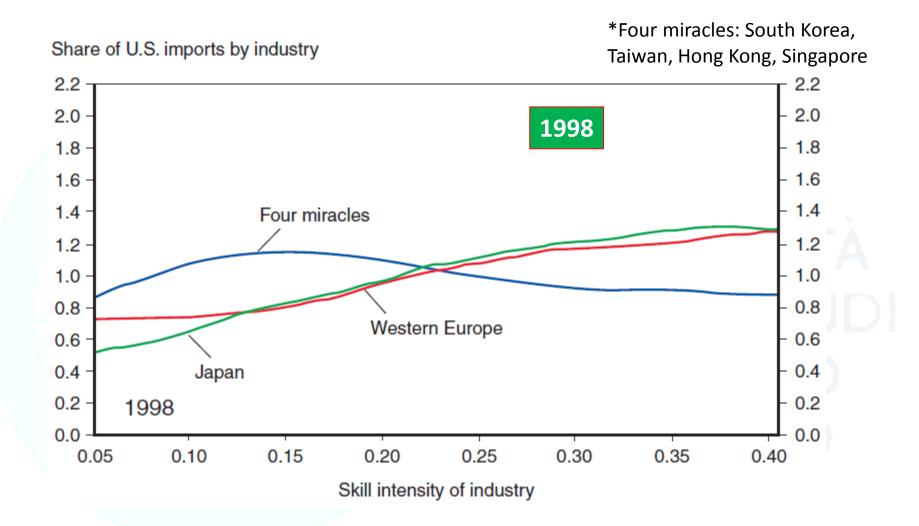
| Country       | Hourly Compensation of Production Workers, 2005 |  |
|---------------|-------------------------------------------------|--|
| United States | 100                                             |  |
| Germany       | 140                                             |  |
| Japan         | 92                                              |  |
| Spain         | 75                                              |  |
| South Korea   | 57                                              |  |
| Portugal      | 31                                              |  |
| Mexico        | 11                                              |  |
| China*        | 3                                               |  |

\*2004

Source: Bureau of Labor Statistics, Foreign Labor Statistics Home Page.


# Leontief paradox

Even though the US has an historically high K/L ratio, the capital intensity of import is larger than the capital intensity of export


|                                                      | Imports     | Exports     |
|------------------------------------------------------|-------------|-------------|
| Capital per million dollars                          | \$2,132,000 | \$1,876,000 |
| Labor (person-years) per million dollars             | 119         | 131         |
| Capital-labor ratio (dollars per worker)             | \$17,916    | \$14,321    |
| Average years of education per worker                | 9.9         | 10.1        |
| Proportion of engineers and scientists in work force | 0.0189      | 0.0255      |

 This happens because the US are even more 'endowed' of highskill workers and in high-tech knowledge

## But sometimes HOS works...



## But sometimes HOS works...



#### Trade and income distribution in HOS

 Moving from autarchy to trade has relevant implications in terms of income distribution

 Owners of a country's abundant factor gain from trade, but owners of a country's scarce factor lose

These effects are persistent

#### Trade and income distribution in HOS

- The **US** case
  - US is relatively well endowed with capital and high-skill workers
  - This induces a specialization in sectors that are intensive of capital and of high-skill workers
  - Specialization also increase the remuneration of these factors and reduces the remuneration of low-skill workers
     politically-sensitive issue!
  - Trade contributes to increasing inequalities (across employees with different skills and between labour and capital)
- Persistent effect → unemployment subsidies for lowskill workers are not effective in the long run

## HOS at work: the resource curse

- Consider the case in which one of the production factors is a 'natural' input (e.g. oil)
- The distribution across countries of that input is very much concentrated in a few countries
- Countries that are 'naturally' endowed with that factor will specialize in commodities intensive in that factor (e.g. gasoline)
- All other factors will be 'attracted' by the sector that is intensive in the natural resource

## Resource curse: why is that a curse?

- Capital and labour will not be employed in manufacturing sectors but in activities that are strictly connected to the exploitation of the natural resource
- This leads to:
  - De-industrialization of the country
  - Shift of income to the owners of the natural resource
    - Private owner → high inequality in income distribution
    - **Public** owner → **corruption** in managing the rents
  - Dependence on the availability of a natural resource exposed to fluctuation of (world) prices and to external shocks
    - Agricultural resource → weather shock
    - Mineral and fossil → new discoveries abroad, climate policy, etc.

# Comparison Ricardo vs HOS Assumptions

|                                    | Ricardo       | HOS           |
|------------------------------------|---------------|---------------|
| Production factors                 | 1             | 2             |
| Within-country mobility of inputs  | Yes           | Yes           |
| Between-country mobility of inputs | No            | No            |
| Technology / productivity          | Heterogeneous | Homogeneous   |
| Relative factors' endowment        | -             | Heterogeneous |
| Trade frictions                    | No            | No            |

## Comparison Ricardo vs HOS Predictions of the model

|                              | Ricardo | HOS             |
|------------------------------|---------|-----------------|
| Inter-industry trade         | Yes     | Yes             |
| Intra-industry trade         | No      | No              |
| Full specialization          | Yes     | Not necessarily |
| Commodity price equalization | Yes     | Yes             |
| Factor(s) price equalization | No      | Yes             |
| Trade is mutually beneficial | Yes     | Yes             |

# What do Ricardo and HOS fail to explain?

- The Ricardo and HOS models motivate the existence of inter-industry trade
- Inter-industry trade → the range of commodities that a country exports differs from the range of commodities that a country imports
- Data suggest that <u>intra-industry</u> trade represents a relevant component of total trade
- How to explain intra-industry trade
  - Remove the assumption of perfect competition
  - Remove the assumption of homogeneous commodities